

Ammoo: AMQP for asyncio

Examples

	Connect to AMQP server

	Declare a queue and exchange
	Declare a queue

	Declare an exchange

	Bind a queue to an exchange

	Publish
	Publish bytes, str and json bodies

	Publish to a headers exchange

	Get messages
	Direct access to a queue

	Subscribe to messages from queue with a consumer

API documentation

	API documentation
	Connect

	Connection

	Channel

	Consumer

	Message

Connect to AMQP server

Use the connect() function to connect to an AMQP server, which returns a Connection object. The
connection to the server is opened when entering the async for block, and likewise closed when it’s exited.

Most of the library’s functionality is in the Channel class. Call Connection.channel() to open one. It’s
a context manager too: The channel is closed when async for exits:

import ammoo

async with await ammoo.connect('amqp://localhost/') as connection:
 async with connection.channel() as channel:
 pass # channel is open

A connection may have several channels open at the same time:

async with await ammoo.connect('amqp://localhost/') as connection:
 async with connection.channel() as channel_1, connection.channel() as channel_2:
 print('two channels opened')
 async with connection.channel() as channel_3:
 print('yet another one opened - 3 in total')
 print('channel_3 is closed now')

Next: Declare a queue and exchange

Declare a queue and exchange

Declare a queue

Declare a queue with Channel.declare_queue():

await channel.declare_queue('my_queue') # declares queue with explicit name

declare_queue returns some parameters, which might come handy if allowing the server to generate a queue name:

declaration = await channel.declare_queue('', exclusive=True)
print(declaration.queue_name)
something like amq.gen-3Wb1ZY42ejtq31P5LmKVkw on RabbitMQ

Declare an exchange

Declare an exchange with Channel.declare_exchange():

await channel.declare_exchange('my_exchange', 'fanout')

Bind a queue to an exchange

Use Channel.bind_queue():

await channel.bind_queue('my_queue', 'my_exchange', 'my_routing_key')

Next: Publish

Publish

Publish bytes, str and json bodies

Publishing messages happens with Channel.publish(), which has a rather huge amount of arguments. Only three are
mandatory though: exchange_name, route and body/json. Publish some bytes:

await channel.publish('my_exchange', 'my_routing_key', b'message body')

A str [https://docs.python.org/3/library/stdtypes.html#str] can be used for body. It will be encoded to bytes with the Channel‘s encoding (utf-8 by default), or
with the encoding argument if used:

await channel.publish('my_exchange', 'my_routing_key', 'text body')
await channel.publish('my_exchange', 'my_routing_key', 'text body', encoding='iso-8859-1')

The body argument can be replaced with the json keyword argument:

await channel.publish('my_exchange', 'my_routing_key', json=['a', 'list', 'of', {'json: 123}])

Publish to a headers exchange

While the other exchange types use routing keys (direct and fanout) or patterns for routing keys (topic) that are
strings, the headers exchange type works with keys and values. When publishing a message to a headers exchange, pass a
dict as route:

await channel.publish('my_exchange', {'key': 'value', 'another_key': 123}, b'message body')

Next: Get messages

Get messages

Direct access to a queue

Messages can be retrieved from a queue synchronously with the Channel.get() method:

message = await channel.get('my_queue')

If the queue is empty, an EmptyQueue exception is raised. Otherwise get returns a GetMessage object.
It has a body attribute, which is a bytearray:

message.body
bytearray(b'message body')

To get a str instead, call message.decode:

message.decode()
'message body'

While using message.body.decode() is possible, message.decode is shorter and uses the message’s content-encoding
property if set.

If the message body is JSON, use the json method to decode it:

message.json()
['body', 'is', {'json': True}]

Finally, acknowledge the message (unless no_ack=True was passed to get):

await message.ack()

or reject it:

await message.reject(requeue=False)

Subscribe to messages from queue with a consumer

Creating a consumer on queue will make the server send messages to the client when they arrive in the queue, without
the need to retrieve each one separately. Calling Channel.consume() and entering the returned Consumer
context with async for subscribes to messages from a queue. To access the messages delivered to the consumer, use
async for:

async with channel.consume('my_queue') as consumer:
 async for message in consumer:
 print(message.body)
 await message.ack()

API documentation

Ammoo leverages Python 3.5’s new syntax to make working with AMQP easier:

import ammoo

async with await ammoo.connect('amqp://broker/') as connection:
 async with connection.channel() as channel:
 await channel.publish('my_exchange', 'routing_key', 'text body')

 async with channel.consume('my_queue') as consumer:
 async for message in consumer:
 print('Received message: {}'.format(message.body)
 await message.ack()

Get a message from queue, decode it’s body as text and reply with some JSON:

message = await channel.get('my_queue', no_ack=True)
await message.reply(json={'original message': message.decode()})

Connect

	
coroutine ammoo.connect(url=None, *, host, port, virtualhost)

	

	Parameters:	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL for the connection. Any component in the URL can be overridden with a keyword argument, or omitted enitrely.

	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – Server hostname or IP address. Defaults to localhost.

	port (int [https://docs.python.org/3/library/functions.html#int]) – Server port. Defaults to 5671 for unencrypted connections and 5672 for SSL.

	virtualhost (str [https://docs.python.org/3/library/stdtypes.html#str]) – AMQP virtualhost to open on connection initialization. Defaults to “/”.

	ssl (bool [https://docs.python.org/3/library/functions.html#bool]) – Force encryption on/off. By default the connection is unencrypted. Using the amqps schema in the URL turns encryption on.

	ssl_context (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]) – Explicit SSL context object. Use this argument for eg. client certificates or validate the server certificate against a particular certificate chain.

	heartbeat_interval (int [https://docs.python.org/3/library/functions.html#int]) – Expected number of seconds between frames to consider the connection alive. Both the server and client will send a heartbeat frame with this interval if no other frames have been sent. Defaults to whatever the server suggests. 0 turns heartbeats off.

	auth – Authentication mechanism/chooser to use. Defaults to password authentication with the AMQPLAIN or PLAIN mechanism.

	login (str [https://docs.python.org/3/library/stdtypes.html#str]) – Username to use for default auth. Defaults to “guest”.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – Password to use for default auth. Defaults to “guest”.

	frame_max (int [https://docs.python.org/3/library/functions.html#int]) – Maximum AMQP frame size. Must be at least 4096 bytes. Defaults to 128kB, until the server demands a smaller one.

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop]) – Event loop. Defaults to asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloops.html#asyncio.get_event_loop]

	connection_factory – Class (or class returning function) to use instead of default Connection.

Connects to an AMQP server and returns a Connection instance:

await ammoo.connect('amqps://myserver/myvhost')
await ammoo.connect(host='myserver', virtualhost='myvhost', ssl=True)

Connecting to unencrypted AMQP on localhost to virtualhost / is simply:

await ammoo.connect()

Connection

	
class ammoo.Connection

	An AMQP connection. It’s an asynchronous context manager, which does the server handshake while entering, and closes the connection in exit. Most of the class’s methods are unusable until the connection has been entered, so use connect() to get one, and use it within async for:

async with await connect() as connection:
 # correct!

async with connect() as connection:
 # Fails: connect() is a coroutine that needs to be awaited

connection = await connect() # works, but...
connection.channel() # raises an exception because connection isn't entered

	
channel(*, prefetch_size=None, prefetch_count=None)

	

	Parameters:	
	prefetch_size (int [https://docs.python.org/3/library/functions.html#int]) – Passed to Channel.qos() if used.

	prefetch_count (int [https://docs.python.org/3/library/functions.html#int]) – Passed to Channel.qos() if used.

	Return type:	Channel

Open a new channel. Should be used in a context manager:

async with connection.channel() as channel:
 ...

If prefetch_size or prefetch_count are given, Channel.qos() is called after opening the channel. The two async with blocks achieve the same:

async with connection.channel(prefetch_count=5) as channel:
 ...

async with connection.channel() as channel:
 await channel.qos(prefetch_count=5, prefetch_size=0)
 ...

Channel

	
class ammoo.Channel

	An AMQP channel.

	
consume(queue_name, *, ...)

	Start a new consumer on a queue.

	Parameters:	
	queue_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Queue name

	no_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, server does not expect messages delivered to consumer to be acknowledged or rejected.

	no_local (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, the server will not deliver messages to the connection that published them.

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, only this consumer can access the queue.

	priority (int [https://docs.python.org/3/library/functions.html#int]) – Optional: Set consumer priority. Lower priority consumers will receive messages only when higher priority ones are busy (Sets x-priority on the consumer).

	Return type:	Consumer

Note

priority is a RabbitMQ extension

	
coroutine get(queue_name, *, ...)

	Get a message from queue.

	Parameters:	
	queue_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Queue name

	no_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, server does not expect message to be acknowledged or rejected.

	Raises:	EmptyQueue – If there are no messages in queue, EmptyQueue is raised

	Return type:	GetMessage

	
coroutine ack(delivery_tag)

	Acknowledge a message.

	Parameters:	delivery_tag (int [https://docs.python.org/3/library/functions.html#int]) – Delivery tag of message to acknowledge (ExpectedMessage.delivery_tag)

See also

ExpectedMessage.ack()

	
coroutine reject(delivery_tag, requeue)

	Reject a message. Opposite of ack().

	Parameters:	
	delivery_tag (int [https://docs.python.org/3/library/functions.html#int]) – Delivery tag of message to reject (ExpectedMessage.delivery_tag)

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the server will try to requeue the message. False means the message is discarded or dead-lettered.

See also

ExpectedMessage.reject()

	
coroutine qos(prefetch_size, prefetch_count, global_)

	Limit how many unacknowledged messages (or message data) will be delivered to consumers. Without qos, the
server will deliver all of the queue’s messages to the consumer, possibly causing the consumer to run out of
memory or starving other consumers of messages.

	Parameters:	
	prefetch_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of unacknowledged messages server will deliver to a consumer. Zero turns the limit off.

	prefetch_count (int [https://docs.python.org/3/library/functions.html#int]) – Maximum combined size of unacknowledged messages server will deliver to a consumer. Zero turns the limit off.

	global (bool [https://docs.python.org/3/library/functions.html#bool]) – For standard AMQP: True applies the qos to the whole connection, and False to the channel only. For RabbitMQ: True applies the setting to both the channel’s current consumers and future ones, while False only applies to the latter.

	
coroutine recover(requeue)

	Ask server to redeliver unacknowledged messages

	Parameters:	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, redeliver messages to the original recipient. If True, the message may be delivered to another recipient.

	
coroutine publish(exchange_name, route, [body,]*, ...)

	Publish a message body to exchange_name with route. body and json are mutually exclusive, but
one of them has to be used.

Publish a binary body with bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]:

await channel.publish(exchange_name, routing_key, b'binary bytes')
await channel.publish(exchange_name, routing_key, bytearray(b'binary bytarray'))

Publish a str [https://docs.python.org/3/library/stdtypes.html#str]:

encoded to bytes with channel's default encoding
await channel.publish(exchange_name, routing_key, 'text string')
use non-default encoding
await channel.publish(exchange_name, routing_key, 'text string', encoding='iso-8859-1')

Serialize JSON into body:

await channel.publish(exchange_name, routing_key, json={'key': 123})

Set the content-encoding property:

body will also be encoded with iso-8859-1 instead of channel's default encoding
await channel.publish(exchange_name, routing_key, 'some text', content_encoding='iso-8859-1'})
content-encoding property is set to channel's default encoding
await channel.publish(exchange_name, routing_key, 'some text', content_encoding=True})
can be used for json too
await channel.publish(exchange_name, routing_key, json={'key': 123}, content_encoding='iso-8859-1'})

Set the content-type property:

await channel.publish(exchange_name, routing_key, b'binary data', content_type=True}) # bytes body -> content-type is set to application/octet-stream
await channel.publish(exchange_name, routing_key, 'some text', content_type=True}) # str body -> content-type is set to text/plain
await channel.publish(exchange_name, routing_key, json={'key': 123}, content_type=True}) # json -> content-type is set to application/json
await channel.publish(exchange_name, routing_key, body, content_type='application/acme-2000'}) # or a regular str

	Parameters:	
	exchange_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Exchange name. Use an empty string for the default exchange.

	route – A str [https://docs.python.org/3/library/stdtypes.html#str] is used as a literal routing key, while a Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping] is used for the headers exchange type.

	body – Message body. str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]. If the json keyword argument is used, body may be omitted.

	json – Optional: Object to serialize as JSON into body. Cannot be used at the same time as the body argument.

	mandatory (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: When True, messages the cannot be routed to a queue are returned back to the client.

	immediate (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: When True, messages that are not routed to a consumer immediately are returned back to the client.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: Encode str [https://docs.python.org/3/library/stdtypes.html#str] body to bytes with this encoding.

	correlation_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: Correlation-id property.

	reply_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: Reply-to property.

	expiration – Optional: Message expiration property, usually in milliseconds. Messages die if they are not consumed from queue within this TTL. int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str].

	cc – Optional: Additional routing keys to use when routing message to queues.

	bcc – Optional: Like cc, but bcc will be removed from message before delivery.

	priority (int [https://docs.python.org/3/library/functions.html#int]) – Optional: priority property.

	delivery_mode (int [https://docs.python.org/3/library/functions.html#int]) – Optional: delivery-mode property 1 for non-persistent or 2 for persistent.

	timestamp (datetime [https://docs.python.org/3/library/datetime.html#module-datetime]) – Optional: Message timestamp property. If time zone is not set, UTC is assumed.

	content_encoding – Optional: content-encoding property. A str [https://docs.python.org/3/library/stdtypes.html#str], or if a bool [https://docs.python.org/3/library/functions.html#bool] True, the value of the encoding argument or the channel’s default.

	content_type – Optional: content-type property. A str [https://docs.python.org/3/library/stdtypes.html#str], or if a bool [https://docs.python.org/3/library/functions.html#bool] True, set application/octet-stream if body is bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], text/plain if it’s str [https://docs.python.org/3/library/stdtypes.html#str], and application/json if the json argument was used.

	message_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: message-id property.

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: type property.

	user_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: user-id property.

	app_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: app-id property.

Note

cc and bcc are RabbitMQ extensions. Not supported by standard AMQP.

	
coroutine select_confirm()

	Turns publisher confirms on for the channel.

Note

RabbitMQ extension. Not supported by standard AMQP.

	
coroutine declare_exchange(exchange_name, exchange_type, *, ...)

	Declare exchange.

	Parameters:	
	exchange_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Exchange name

	exchange_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Exchange type: direct, fanout, topic, or headers.

	durable (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, exchange will survive server restart.

	auto_delete (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, the exchange is deleted (after a delay) when the last queue is unbound from it.

	alternate_exchange_name – Optional: Alternate exchange name. Messages that can’t be routed to any queue are instead published on the alternate exchange (Sets alternate-exchange on the exchange).

	
coroutine delete_exchange(exchange_name, *, ...)

	Delete exchange exchange_name.

	Parameters:	
	exchange_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Exchange name

	if_unused (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: Only delete exchange if it is unused.

	
coroutine assert_exchange_exists(exchange_name)

	Asserts exchange_name exists*. Channel will be closed if it does not!

	Parameters:	exchange_name – Exchange name

	
coroutine bind_exchange(destination, source, routing_key)

	Bind source exchange to destination exchange for routing_key.

	Parameters:	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination exchange name

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Source exchange name

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Routing key

Note

RabbitMQ extension. Not supported by standard AMQP.

	
coroutine declare_queue(queue_name, *, ...)

	Declare a queue named queue_name.

	Parameters:	
	queue_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Queue name

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, the queue can be accessed only by this connection and is deleted when connection is closed.

	durable (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, the queue will be marked as durable, surviving server restarts.

	auto_delete (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: If True, the queue is deleted when all consumers are finished using it.

	ttl (int [https://docs.python.org/3/library/functions.html#int]) – Optional: Messages die after this number of milliseconds, if no one has consumed them first (Sets x-message-ttl on the queue).

	expires (int [https://docs.python.org/3/library/functions.html#int]) – Optional: Milliseconds queue is unused before it is deleted (Sets x-expires on the queue).

	max_length (int [https://docs.python.org/3/library/functions.html#int]) – Optional: Maximum number of messages in the queue before the oldest will die (Sets x-max-length on the queue).

	max_length_bytes (int [https://docs.python.org/3/library/functions.html#int]) – Optional: Maximum number of message bytes in the queue before the oldest will die (Sets x-max-length on the queue).

	dead_letter_exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: Name of dead letter exchange. The queue’s dead messages are routed here (Sets x-dead-letter-exchange on the queue).

	dead_letter_routing_key – Optional: Override dead messages’ routing key when routing them to dead_letter_exchange (Sets x-dead-letter-routing-key on the queue).

	max_priority (int [https://docs.python.org/3/library/functions.html#int]) – Optional: Queue’s maximum priority (Sets x-max-priority).

	Return type:	QueueDeclareOkParameters

	
coroutine delete_queue(queue_name)

	Delete a queue named queue_name. If the queue does not exist, the method merely asserts it is not there.

	Parameters:	
	queue_name – Queue name

	if_unused (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: Only delete queue if it has no consumers.

	if_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional: Only delete queue if it has no messages.

	Returns:	Number of messages in queue before it was deleted

	
coroutine purge_queue(queue_name)

	Purges a queue of messages, emptying it.

	Parameters:	queue_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Queue name

	Returns:	Number of messages in queue before it was purged

	
coroutine bind_queue(queue_name, exchange_name, routing_key)

	Bind queue_name to exchange_name for routing_key.

	Parameters:	
	queue_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Queue name

	exchange_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Exchange name

	routing_key – A str [https://docs.python.org/3/library/stdtypes.html#str] is used as a literal routing key, and a Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping] for the headers exchange type.

	
coroutine unbind_queue(queue_name, exchange_name, routing_key)

	Unbind queue_name from exchange_name for routing_key. Undoes bind_queue().

	Parameters:	
	queue_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Queue name

	exchange_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Exchange name

	routing_key – Same as for bind_queue().

	
coroutine assert_queue_exists(queue_name)

	Asserts queue_name exists*. Channel is closed by the server if it does not!

	Parameters:	queue_name – Queue name

	Return type:	QueueDeclareOkParameters

Consumer

	
class ammoo.Consumer

	An AMQP consumer. Asynchronous iterable that returns DeliverMessage instances. Must be used in an
async for block:

async with channel.consume('my_queue') as consumer:
 async for message in consumer:
 ...

Message

	
class ammoo.Message

	Base class for messages. Not instantiated directly:

Message: body, decode(), json(), exchange_name, routing_key, properties
-> ReturnMessage: reply_code, reply_text
-> ExpectedMessage: ack(), reject(), reply(), delivery_tag, redelivered
 -> DeliverMessage: consumer_tag
 -> GetMessage: message_count

	
body

	Message’s raw body as a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] instance

>>> message.body
bytearray(b'binary data')

	
exchange_name

	Exchange message was published to

	
routing_key

	Routing key message was published with

	
properties

	Message’s BasicHeaderProperties

	
decode(encoding=None)

	Decode body into a str [https://docs.python.org/3/library/stdtypes.html#str]. When the encoding argument is not passed, the encoding defaults to the
message’s content-encoding property (if defined), or the channel’s default encoding.

>>> message.decode()
'text body'
>>> message.decode('iso-8859-1')
'sí'

	Parameters:	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: Encoding to use to decode body instead of content-encoding property/channel’s default encoding

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
json(encoding=None)

	Decode body as JSON.

	Parameters:	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional: Encoding to use to decode body instead of content-encoding property/channel’s default encoding

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list]

	
class ammoo.ExpectedMessage

	Base class for DeliverMessage and GetMessage; not instantiated directly. Subclass of
Message.

	
delivery_tag

	Message’s delivery tag, used for acknowledging or rejecting message to server

Note

Using the ack() or reject() methods of this class instead of Channel‘s avoids needing to pass the delivery tag explicitly.

	
coroutine ack()

	Acknowledge message to server. Calls Channel.ack() with the message’s delivery tag.

	
coroutine reject(requeue)

	Reject message to server. Calls Channel.reject() with the message’s delivery tag.

	
coroutine reply([body,]*, ...)

	Publish a reply to a message that has the reply-to property set. If the message has the correlation-id
property, it’s also set on the published message.

The method accepts the same keyword arguments as Channel.publish().

Note

Direct reply to is a RabbitMQ extension

	
class ammoo.DeliverMessage

	Message delivered to a Consumer. Subclass of ExpectedMessage.

	
consumer_tag

	str [https://docs.python.org/3/library/stdtypes.html#str] consumer tag parameter of delivered message.

	
class ammoo.GetMessage

	A message from queue returned by calling Channel.get(). Subclass of ExpectedMessage.

	
message_count

	Number of messages still in queue after getting this message.

	
class ammoo.ReturnMessage

	Message returned by server as a consequence of using the mandatory or immediate flags of
Channel.publish(). Subclass of Message.

	
reply_code

	int [https://docs.python.org/3/library/functions.html#int] code for why message could not be routed to queue/consumed.

	
reply_text

	str [https://docs.python.org/3/library/stdtypes.html#str] description of why message was returned.

Message properties

	
class ammoo.wire.frames.header.BasicHeaderProperties(content_type, content_encoding, headers, delivery_mode, priority, correlation_id, reply_to, expiration, message_id, timestamp, type_, user_id, app_id, cluster_id)

	
	
app_id

	Alias for field number 12

	
cluster_id

	Alias for field number 13

	
content_encoding

	Alias for field number 1

	
content_type

	Alias for field number 0

	
correlation_id

	Alias for field number 5

	
delivery_mode

	Alias for field number 3

	
expiration

	Alias for field number 7

	
headers

	Alias for field number 2

	
message_id

	Alias for field number 8

	
priority

	Alias for field number 4

	
reply_to

	Alias for field number 6

	
timestamp

	Alias for field number 9

	
type_

	Alias for field number 10

	
user_id

	Alias for field number 11

Parameters

	
class ammoo.wire.frames.method.queue.QueueDeclareOkParameters(queue_name, message_count, consumer_count)

	
	
consumer_count

	Alias for field number 2

	
message_count

	Alias for field number 1

	
queue_name

	Alias for field number 0

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 ammoo	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | J
 | M
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	ack() (ammoo.Channel method)

 	(ammoo.ExpectedMessage method)

 	ammoo (module), [1], [2], [3], [4]

 	
 	app_id (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 	assert_exchange_exists() (ammoo.Channel method)

 	assert_queue_exists() (ammoo.Channel method)

B

 	
 	BasicHeaderProperties (class in ammoo.wire.frames.header)

 	bind_exchange() (ammoo.Channel method)

 	
 	bind_queue() (ammoo.Channel method)

 	body (ammoo.Message attribute)

C

 	
 	Channel (class in ammoo)

 	channel() (ammoo.Connection method)

 	cluster_id (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 	connect() (in module ammoo)

 	Connection (class in ammoo)

 	consume() (ammoo.Channel method)

 	
 	Consumer (class in ammoo)

 	consumer_count (ammoo.wire.frames.method.queue.QueueDeclareOkParameters attribute)

 	consumer_tag (ammoo.DeliverMessage attribute)

 	content_encoding (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 	content_type (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 	correlation_id (ammoo.wire.frames.header.BasicHeaderProperties attribute)

D

 	
 	declare_exchange() (ammoo.Channel method)

 	declare_queue() (ammoo.Channel method)

 	decode() (ammoo.Message method)

 	delete_exchange() (ammoo.Channel method)

 	
 	delete_queue() (ammoo.Channel method)

 	DeliverMessage (class in ammoo)

 	delivery_mode (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 	delivery_tag (ammoo.ExpectedMessage attribute)

E

 	
 	exchange_name (ammoo.Message attribute)

 	
 	ExpectedMessage (class in ammoo)

 	expiration (ammoo.wire.frames.header.BasicHeaderProperties attribute)

G

 	
 	get() (ammoo.Channel method)

 	
 	GetMessage (class in ammoo)

H

 	
 	headers (ammoo.wire.frames.header.BasicHeaderProperties attribute)

J

 	
 	json() (ammoo.Message method)

M

 	
 	Message (class in ammoo)

 	message_count (ammoo.GetMessage attribute)

 	(ammoo.wire.frames.method.queue.QueueDeclareOkParameters attribute)

 	
 	message_id (ammoo.wire.frames.header.BasicHeaderProperties attribute)

P

 	
 	priority (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 	properties (ammoo.Message attribute)

 	
 	publish() (ammoo.Channel method)

 	purge_queue() (ammoo.Channel method)

Q

 	
 	qos() (ammoo.Channel method)

 	
 	queue_name (ammoo.wire.frames.method.queue.QueueDeclareOkParameters attribute)

 	QueueDeclareOkParameters (class in ammoo.wire.frames.method.queue)

R

 	
 	recover() (ammoo.Channel method)

 	reject() (ammoo.Channel method)

 	(ammoo.ExpectedMessage method)

 	reply() (ammoo.ExpectedMessage method)

 	
 	reply_code (ammoo.ReturnMessage attribute)

 	reply_text (ammoo.ReturnMessage attribute)

 	reply_to (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 	ReturnMessage (class in ammoo)

 	routing_key (ammoo.Message attribute)

S

 	
 	select_confirm() (ammoo.Channel method)

T

 	
 	timestamp (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 	
 	type_ (ammoo.wire.frames.header.BasicHeaderProperties attribute)

U

 	
 	unbind_queue() (ammoo.Channel method)

 	
 	user_id (ammoo.wire.frames.header.BasicHeaderProperties attribute)

 nav.xhtml

 Table of Contents

 		Ammoo: AMQP for asyncio

 		Connect to AMQP server

 		Declare a queue and exchange

 		Declare a queue

 		Declare an exchange

 		Bind a queue to an exchange

 		Publish

 		Publish bytes, str and json bodies

 		Publish to a headers exchange

 		Get messages

 		Direct access to a queue

 		Subscribe to messages from queue with a consumer

 		API documentation

 		Connect

 		Connection

 		Channel

 		Consumer

 		Message

 		Message properties

 		Parameters

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

